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Introduction 
 
•    The  constituent  particles  of  the  matter  like  atoms,  molecules  or  ions  are  in  continuous  

motion. 
 
•     In  solids,  the  particles  are  very  close  and   oscillate  about  their  mean  positions. 
 
•    In  gases,  at  low  density,  the  particles  are  far  away  from  each  other  and  perform  random  

motion  in  all  directions.  Also,  the  interactions  among  them  are  negligible. 
 
•     In  liquids,  the  particles  are  slightly  more  away  than  in  solids  and  their  motion  is  less  free  

than  in  gases. 
 
•   Pressure,  temperature,  volume,  internal  energy  associated  with  gas  are  known  as  

macroscopic  physical  quantities  which  are  manifested  as  an  average  combined  effect  of  
the  microscopic  processes. 

 
•     Macroscopic  quantities  like,  pressure,  temperature,  volume  can  be  measured  while  internal  

energy  can  be  calculated  from  them.  Description  of  a  system  using  these  quantities  is  
known  as  macroscopic  description. 

 
•     Macroscopic  quantities  and  their  interrelationships  can  be  understood  from  the  processes  

occurring  between  the  constituent  particles  at  microscopic  level,  e.g.,  pressure  of  a  gas  
can  be  understood  from  the  transfer  of  momenta  to  the  walls  of  the  container  by  the  
collisions  of  the  molecules  making  random  motion.  Thus,  description  of  the  system  in  
relation  to  the  speed,  momentum  and  kinetic  energy  of  its  constituent  particles  is  known  
as  microscopic  description. 

 
Kinetic  theory  of  gases  is  an  approach  wherein  the  laws  of  mechanics  are  applied      
( statistically )  to  the  constituent  particles  of  the  system  ( i.e.,  gas )  and  macroscopic  
quantities  are  obtained  in  terms  of  its  microscopic   quantities  with  the  help  of  a  
mathematical  scheme. 
 
11.1  Laws  of  ideal  gas 
 
Boyle’s  law: 
 
“At  constant  temperature,  volume  of  a  fixed  
amount  of  gas,  having  sufficiently  low  density,  
is  inversely  proportional  to  its  pressure.” 
 

∴   V   ∝  
P
1     ( for  fixed  amount  and  fixed  

temperature ) 
∴   PV   =   constant 
 
Figure  shows  P → V  curves  for  some  real  gas  
at  three  different  temperatures  obtained  
experimentally  ( shown  by  continuous  lines )  
and  theoretically  using  Boyle’s  law  ( shown  by  
broken  lines ).  From  the  graphs,  it  can  be  seen  
that  real  gas  follows  Boyle’s  law  at  high  
temperature  and  low  pressure. 
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Charles’  and  Gay-Lussac’s  law: 
 
“At  constant  pressure,  the  volume  of  a  given  amount  of  gas,  having  low  density,  is  
proportional  to  its  absolute  temperature.” 
 

∴   V   ∝   T   ( for  fixed  amount  and  fixed  pressure  of  gas)       ∴   
T
V    =   constant 

 
Equation  of  state  for  an  ideal  gas: 
 

Combining  Boyle’s  and  Charles’  laws,    
T

PV    =   constant  ( for  a  given  amount  of  gas ). 

 
Also,  the  volume  of  gas  is  proportional  to  its  amount  at  constant  temperature  and  pressure. 
 

∴   
T

PV    =   µ R,     or     PV   =   µRT     …     …     …     ( 1 ) 

        
         where   µ   represents  the  number  of  moles  and   
                      R  is  universal gas constant   =  8.314  J ( mol ) -1 K - 1  =  1.986  Cal ( mol ) - 1 K - 1.  
 
A  gas  obeying  the  equation    PV  =   µRT   at  all  pressures  and  temperatures  is  known  as  an  
ideal  gas.   No  real  gas  behaves  as  an  ideal  gas  under  all  the  circumstances.  However,  at  
high  temperature  and  at  low  pressure,  i.e.,  at  low  density,  real  gas  behaves  like  an  ideal  gas  
and  obeys  the  above  ideal  gas  law  equation.  As  the  thermodynamic  state  can  be  fixed  using  
the  above  equation,   it  is  called  the  equation  of  state  for  an  ideal  gas. 
 
Avogadro’s  number: 
 
“The  number  of  constituent  particles  ( atoms  or  molecules )  contained  in  one  mole  of  gas  is  
called  Avogadro’s  Number  ( NA ).” 
 
The  value  of   NA   is  the  same  in  all  elements  and  is  equal  to    6.023  ×  1023  ( mol ) - 1. 
 
If   M   g  of  gas  has   N   molecules   and   M0   is  the  molecular  weight  of  gas,  then 
 

Number  of  moles  of  gas,   µ    =   
AN

N    =   
0M

M . 

 
Different  forms  of  equation  of  state  of  an  ideal  gas: 
 

PV   =   
AN

N RT   =   N 
AN

R T   =   NkT     …     …     …     ( 2 )    

 

Here,   
AN

R    =   k   =   1.38  ×  10 - 23   J ( molecule ) - 1 K- 1      ( Boltzmann’s  constant ) 

 

∴   P   =   
V
N  k T   =   n k T,           …     …     …     …     ( 3 ) 
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where    n   =   
V
N    =   number  of  molecules  per  unit  volume  of  the  container,  which  is  also  

called  the  number  density  of  the  molecules. 
 

∴   n   =   
T k

P      [ from  equation  ( 3 ) ]      

 

Now,   PV   =   µRT   =   
0M

M R T    

∴   P   =   
0M

 
V
M 1 ⋅ R T   =   

0M
ρ  R T     …     …      …     ( 4 ),     where    ρ   =   

V
M  =  density  of  gas 

 
Equations  ( 1 ),  ( 2 ),  ( 3 )  and  ( 4 )  are  different  forms  of  the  equation  of  state  of  an  ideal  gas. 
 
Avogadro’s  hypothesis: 
 
“At  constant  temperature  and  pressure,  the  number  of  molecules  in  gases  having  the  same  
volume  is  the  same.” 
 
11.2  Kinetic  theory  of  gases 
 
Macroscopic  physical  quantities  of  a  gas  like  pressure,  temperature,  etc.  can   be  understood  
from  the  interrelationships  between  its  microscopic  quantities.  This  is  discussed  in  the  kinetic  
theory  of  gases  based  on  the  following  postulates. 
 
Molecular  model  of  ideal  gas:  Postulates: 
 
( 1 )    A  gas  is  made  up  of  microscopic  particles  called  molecules  which  may  be  monoatomic  

or  polyatomic.  If  only  one  element  is  present  in  a  gas,  all  its  molecules  are  same  and  
chemically stable. 

 
( 2 )    The  molecules  of  a  gas  can  be  considered  as  perfectly  rigid  spheres  or  particles  devoid  

of  internal  structure. 
 
( 3 )    The  molecules  are  in  continuous  random  motion  colliding  with  each  other  and  with  the  

walls  of  the  container. 
 
( 4 )    The  molecules  of  a  gas  follow  Newton’s  laws  of  motion. 
 
( 5 )   The  number  of  molecules  in  a  gas  is  very  large.  This  assumption  justifies  randomness  

of  their  motion. 
 
( 6 )   The  total  volume  of  all  the  molecules  of  a  gas  is  negligible  as  compared  to  the  volume  

of  the  vessel  containing  the  gas. 
 
( 7 )   Intermolecular  forces  act  only  when  two  molecules  come  close  to  each  other  or  collide. 
 
( 8 )  The  collision  between  the  molecules  and  between  the  molecules  and  the  wall  of  the  

container  are  elastic.  The  impact  time  of  collision  is  negligible  as  compared  to  the  time  
between  successive  collisions.  Kinetic  energy  is  conserved  in  an  elastic  collision.  During  
the  impact  time  of  collisions,  kinetic  energy  before  collision  is  momentarily  converted  
into  potential  energy  but  is  again  reconverted  into  the  same  amount  of  kinetic  energy  
after  the  collision.  Hence  kinetic  energy  of  the  gas  can  be  considered  to  be  its  total  
mechanical  energy.  
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11.3  Pressure  of  an  ideal  gas 
 
Suppose  an  ideal  gas  is  filled  in  a  cubic  
container  having  elastic  walls  having  each  
side  of  length,  l. 
 
∴   area  of  each  wall   =   l 2. 
 
Let  N  =  number  of  molecules  having  

velocities   
→→→→
N321 v   ,...,   ,v   ,v   ,v   at  some  

instant   and 
   
          m   =    mass  of  each  molecule.  
 
Now  consider  opposite  walls   A1   and   A2   
of  the  container  perpendicular  to  X-axis. 
 

Let  the  molecule   ‘1’   have  velocity   
→
1v   with  its  components,   1z1y1x v   and   v   ,v   along          

X-axis,  Y-axis   and  Z-axis   respectively. 
 
When  this  molecule  collides  elastically  with  the  wall   A1,  its  velocity  along  X-axis  gets  
reversed  and  becomes   - 1xv .  But  y  and  z  components  of  its  velocity  do  not  change.   
 
The  x-component  of  momentum  of  the  molecule  before  collision  is    pi   =   m 1xv  
 
The  x-component  of  momentum  of  the  molecule  after  collision  is       pf   =   - m 1xv  
 
∴   the  change  in  momentum  of  the  molecule  due  to  this  collision  is 
 
      ∆ p   =   pf   -   pi   =   - m 1xv    - m 1xv    =   - 2m 1xv  
 
∴  by  the  law  of  conservation  of  momentum,  the  wall  gains  momentum   2m 1xv   in  the  

direction  of   +ve  X-axis. 
 
Now,  the  molecule  returning  after  colliding  with   A1,  collides  with  the  wall   A2  and  without  
making  any  other  collision  on  its  path,  collides  again  with  the  wall   A1.  Between  these  two  
collisions  with  the  wall   A1,  it  travels  a  distance    2 l    with  velocity   1xv    along   X-axis. 
 

∴   time  between  two  successive  collisions,      t  =  
1xv

 2 l  

∴   number  of  collisions  per  second                      =   
l 2

v 1x  

∴   momentum  gained  by  the  wall  per  second    =   force,  F1   =   2m 1xv   ×  
l 2

v 1x   =   
l 

v m 2
1x  
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∴   total  force  on  the  wall  due  to  all  the  N  number  of  molecules    
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          (  V  =  l 3  =  volume  of  the  container ) 

                                                  
                                          ∴    P   =   ρ  <  vx

2 >     …     …     …     …     ( 1 ) 
          
          

                              where,   
V

mN    =   ρ   =   density  of  gas    

and       
N

v
  

2
ixn

1    i
∑
=

  =  <  vx
2 >   =   average  of  the  squares  of  x-components  of  molecules. 

 
Now,  as  the  number  of  molecules  is  very  large  and  their  motion  is  random, 
 
        <  v2  >   =   <  vx

2 >   +   <  vy
2 >   +   <  vz

2 >          and     <  vx
2 >   =  <  vy

2 >   =  <  vz
2 >    

 

∴   <  v2  >   =   3 <  vx
2 >          and     <  vx

2 >   =   
3
1   <  v2  > 

 
Putting  this  value  of   <  vx

2 >   in  equation  ( 1 ), 
 

                                                  P   =   
3
1   ρ  <  v2 >         …     …     …     ( 2 ) 

 
[ This  equation  gives  the  pressure  of  an  ideal  gas. ] 
 
 
rms  speed  vrms :  
 
The  square  root  of  mean  speed  of  molecules,  also  known  as  mean  molecular  speed, 
 
<  v2 >   is  called  root  mean  square  speed,   vrms . 
 

From  equation  ( 2 ),   vrms   =   ><  v   2    =   
ρ

3P  
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11.4  Kinetic  energy  and  temperature 
 
Pressure  of  an  ideal  gas  is  given by  the  equation, 
 

           P    =   
3
1   ρ  <  v2 > 

∴     PV   =    
3
1   ρ V  <  v2 >   =    

3
1   M  <  v2 >          ( as    ρ V   =   M   is  the  total  mass  of  gas. ) 

                 =    
3
1   µ M0  <  v2 >,   where   µ    =   number  of  moles  of  gas   and 

                                                                    M0  =   molecular  weight  of  gas. 
 
Comparing  this  equation  with   PV   =    µRT   ( ideal  gas  law  equation ),  we  get 
 

3
1   µ M0  <  v2 >     =   µRT          ∴       M0  <  v2 >   =   3 RT 

 

∴   
2
1  M0  <  v2 >  =  

2
3  RT    …   ( 1 )  which  is  the  mean  translational  kinetic  energy  of  1  mole  of 

                                                               gas  and  is  proportional  to  the  absolute  temperature  of  gas. 

∴                vrms   =   
0M

3RT  …   ( 2 ) 

Dividing  equation   ( 1 )   by   Avogadro  number,   NA , 
 

     
2
1  

A
0

N
M

  <  v2 >  =  
2
3  

AN
R T 

 

∴    
2
1  m <  v2 >   =   

2
3  k T    …  ( 3 )    [ m  =  mass  of  a  molecule,   k  =  Boltzmann’s  constant. ] 

 
This  is  the  mean  translational  kinetic  energy  per  molecule  of  the  gas  and  is  proportional  to  
the  absolute  temperature  of  the  gas.  It  does  not  depend  on  pressure,  volume  or  type  of  gas. 
 

∴                vrms   =   
m

T k 3  …   ( 4 )      

 
This  equation  shows  that  at  a  given  temperature,  the  speed  of  lighter  molecules  is  more  as  
compared  to  that  of  heavier  molecules. 
 
Dalton’s  law  of  partial  pressure 
 
Suppose   a  mixture  of  µ1,   µ2,   …,   moles  of  different  ideal  gases,  mutually  inert,  is  filled  in  a  
container  of  volume  V  at  temperature  T  and  pressure  P  and  µ  is  the  total  number  of  moles. 
 
∴   PV   =   µ RT   =   ( µ1  +   µ2  +   … ) RT 
 

∴     P   =   ...      
V
RT µ      

V
RT µ 21 ++    =   P1   +   P2   +   …  ,      

where   P1 ,   P2 ,   …   are  the  partial  pressure  of  the  gases  in  the  mixture. 
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Thus,  the  total  pressure  of  the  mixture  of  ideal  gases,  mutually  inert,  is  the  sum  of  their  
partial  pressures.  The  partial  pressure  of  any  gas  of  the  mixture  is  same  as  the  pressure  of  
that  gas  at  the  same  temperature  when  it  alone  is  filled  in  the  container  having  the  same  
volume. 
 
11.5  Maxwell’s  law  of  molecular  speed  distribution 
 
Gas  molecules  perform  random  motion  with  different  speeds  in  different  directions.  James  
Clerk  Maxwell  gave  molecular  speed  distribution  law  for  a  sample  of  gas  containing   N   
molecules  as 
 

Nv dv   =   4 π N  dv v e 
T k 2

m 2T k 2

2v m 2
3

 -








 π
, 

 
where,   N    =   total  number  of  gas  molecules 
              Nv   =   number  of  molecules  per  unit  speed  interval 
          Nv dv  =   number  of  molecules  having  speed  interval,  dv 
               m   =   mass  of  a  molecule 
               k    =   Boltzmann’s  constant 
               T    =   absolute  temperature 
 
The  graph  shows  the  number  of  
molecules  per  unit  speed  interval,  Nv  
versus  speed,  v  for  oxygen  gas at  
two  different  temperatures. 
 
The  total  number  of  molecules,  N  is  
given  by 

N   =   ∫
∞

0
v dv N  

and  the  average  speed  of  molecules  
of  the  gas,  each  of  mass  m,  at  
temperature  T  is 
 

<  v  >   =   ∫
∞

0
v dv N v   

N
1    =   

m 
T k 8 

π
  =   1.59  

m
T k  

vrms      =      ><  v   2       =   
m

T k 3    =   1.73 
m
T k  

 
Most  probable  speed  ( vp ):   The  speed  possessed  by  the  maximum  number  of  molecules   

is  called  the  most  probable  speed,   vp.     
 

When   v   =   vp,    

pv 

2 
T k 2

2v m
2
3

v e   
T k 2

m  N  4  
dv
d



























 π
π

 -
  =   0     ∴   vp   =   

m
T k 2   =   1.41   

m
T k  

Thus,    vp   :   <  v  >   :   vrms   =   1   :   1.128   :   1.224. 
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11.6  Law  of  equipartition  of  energy 
 
The  average  kinetic  energy  of  each  monoatomic  molecule  of  a  gas  in  a  container  is, 
 

                <  E  >   =   
2
1  m  < vx

2  >   +   
2
1  m  < vy

2  >   +   
2
1  m  < vz

2  >   =   
2
3  k T 

 
But,       < vx

2  >   =   < vy
2  >   =   < vz

2  >        
 

∴           <  E  >   =   
2
3  m  < vx

2 >   =   
2
3  k T 

 

∴   
2
1  m  < vx

2   =   
2
1  k T 

 
Thus,  the  energy  associated  with  each  possible  independent  motion  of  a  molecule  in  a  

container  is   
2
1  k T.    

 
Now,  consider  diatomic  gas  molecules.  They  perform  
rotational  and  vibrational  motion  besides  translational  
motion.  The  rotational  motion  of  such  a  molecule  is  
possible  in  two  different  ways,  i.e.,  about  two  mutually  
perpendicular  axes  both  passing  through  the  mid-point  of  
a  line  joining  the  molecules   and  perpendicular  to  the  
line  as  shown  in  the  figure.  For  polyatomic  gas  
molecules,  such  a  motion  can  occur  about  three  mutually  
perpendicular  axes. 
 
The  atoms  of  a  diatomic  molecule  perform  oscillations  
also  due  to  interatomic  forces.  Thus,  a  diatomic  molecule  
possesses  total  energy  comprising  of  three  different  
types  of  energy: 
 
( 1 )  Translational  kinetic  energy,           

         Et  =   
2
1 m ( vx

2  +  vy
2  + vz

2 ), 

( 2 )   Rotational  kinetic  energy,    

         Er  =   
2
1 I1 ω1

2  +   
2
1 I2 ω2

2   and 

( 3 )   Vibrational  energy,               

         Ev  =  
2
1 µv 2   +   

2
1 kx2,  where  the  first  and  the  second  terms  are  the  potential  and  kinetic  

energy  respectively  of  the  vibrator,  µ  is  the  reduced  mass  and  k  
is  the  force  constant  of  the  system. 

 
The  number  of  quadratic  terms  for  different  motions  appearing  in  the  expression  of  total  
energy  of  a  molecule  are  called  degrees  of  freedom  of  the  system.  It  is  3  for  a  monoatomic  
molecule,  5  for  a  non-vibrating  diatomic  molecule  and  7  if  it  is  vibrates. 
 
Law  of  equipartition  of  energy  states  that  the  average  energy  of  a  molecule  in  a  gas  
associated  with  each  degree  of  freedom  is   ( 1 / 2 ) k T  where  k  is  Boltzmann’s  constant  and  T  
is  the  absolute  temperature. 
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11.7  Mean  free  path 
 
The  linear  distance  traveled  by  a  molecule  of  gas  with  constant  speed  between  two  
successive  collisions  ( with  molecules )  is  called  
free  path.  Mean  free  path  is  the  average  of  such  
free  paths. 
 
The  path  of  random  motion  of  a  gas  molecule  
is  shown  in  the  figure.  The  molecule  moves  on  
a  straight  path  between  two  successive  
collisions,  the  length  of  which  is  called  free  
path.  But  on  collision,  the  direction  and  
magnitude  of  its  velocity  changes. 
 
 
Consider  that  one  molecule  of  a  gas  moves  with  
average  speed  v   while  other  molecules  are  
stationary.  Its  diameter  is  d. 
 
During  its  motion  on  a  straight  path,  it  will not  collide  with  
a  molecule  which  is  at  a  perpendicular  distance  d  from  the  
straight  path  along  which  the  centre  of  the  molecule  
moves.  Hence,   we  can  imagine  a  cylinder  around  its  path  
of  radius  d  or  diameter  2d  such  that  the  molecules  outside  
this  cylinder  will  not  collide  with  the  moving  molecule. 
 
In  time  t,  the  molecule  will  sweep  the  imaginary  cylinder  
of  cross-sectional  area,   πd2,   and  length   v t.  Thus,  it  will  
pass  through  the  cylinder  of  volume   πd2 v t   in  time  t.  If  n  
is  the  number  of  molecules  per  unit  volume,  the  moving  
molecule  will  undergo   n πd2 v t   collisions  in  time  t. 
 
The  mean  free  path   l    is  the  average  distance  between  
two  successive  collisions. 
 

∴   mean  free  path   =   
collisions  of  number  total

molecule  the  by  travelled  cetandis  

                                             
                                            in  time   t. 
 

∴   l    =   
t  v d n

t v
2 π

   =   
2d n

1
 π

 

 
In  this  derivation,  the  other  molecules  were  assumed  to  be  
stationary.  With  rigorous  analysis  it  can  be  shown  that  
when  the  motion  of  all  the  molecules   is  considered,  then  
the  mean  free  path  works  out  to  be   
 

l    =   
2d n  2 

1
 π

 


