Ankit Gupta Classes
 www.AnkitGuptaClasses.weebly.com

UNIT-4

CHEMICAL KINETICS

1 MARK QUESTIONS

Q.1. In the reaction $A \longrightarrow B$, if the concentration of A is plotted against time, the nature of the curve obtained will be as shown. What is the order of the reaction?

Ans. First Order
Q. 2. What is the effect of temperature on activation energy?

Ans. There is no effect of temperature on activation energy.
Q. 3. Which will dissolve in water faster, powdered sugar or crystalline sugar and why ?

Ans. Powdered sugar will dissolve in water faster as it has more surface area.
Q. 4. Which reaction will take place faster and why ?
$500^{\circ} \mathrm{C}$
$\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})$
$1000^{\circ} \mathrm{C}$
$\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})$
Ans. The second reaction is faster because increase in temperature increases the number of effective collisions and hence increase in rate.
Q. 5. For a reaction $A+\mathrm{H}_{2} \mathrm{O} \longrightarrow B ; r=k[A]$. What is its (i) Molecularity (ii) Order ?

Ans. Pseudo unimolecular rection order $=1$

2 MARKS QUESTIONS

Q. 1. A reaction : Reactant \longrightarrow Product is represented by :

(i) Predict the order of the reaction.
(ii) What does the slope of the graph represent?

Ans. (i) Zero order
(ii) Slope $=-k=\frac{\mathrm{d}[R]}{\mathrm{dt}}$
Q. 2. For a reaction, the activation energy is zero. What is the value of rate constant at 300 K if $\mathrm{K}=1.6 \times 10^{6} \mathrm{~s}^{-1}$ at 280 K .
Ans. $\log \frac{K_{2}}{K_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]=\frac{0}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]=0$
$\frac{K_{2}}{K}=\operatorname{antilog}(0)=1$ or $K_{2}=K_{1}=1.6 \times 10^{6} \mathrm{~s}^{-1}$
Q. 3. The slope of the line in the graph of $\log K$ is $\frac{1}{T}$ for a reaction is -5841 K . Calculate E_{a} for the reaction.

The More Goals You Set - The More Goals You Get.

Ankit Gupta Classes

Ans. Slope $=-\frac{E_{a}}{2.303 R}$
$E_{a} \quad=-2.303 R \times$ Slope
$=-2.303 \times 8.314 \times-5841$
$=1.118 \times 10^{5} \mathrm{~g} / \mathrm{mol}$
3 MARKS QUESTIONS K
Q. 1. Consider the reaction $R \longrightarrow P$. The change in concentration of A with time is shown in the given plot :

Conc. [R]

(i) Predict the order of the reaction.
(ii) Derive the expression for the time required for the completion of the reaction.

Ans. (i) Zero order
(ii) For the reaction R \qquad
$r=-\frac{d[R]}{d t}=K[R]^{\circ}$
$-d[R]=K d t$
On integration
$-[R]=K t+C$
When $t=0[R]=[R]_{0}$
On substitution
$-[R]=K t-[R]_{0} \Rightarrow[R]=-K t+[R]_{0}$
$K t=[R]_{0}-[R] \Rightarrow t=\frac{1}{K}\left\{[R]_{0}-[R]\right\}$
Q. 2. Answer the following questions on the basis of the given curve for a first order reaction :
$A \longrightarrow P$

(i) What is the relation between slope of this line and rate constant?
(ii) Calculate the rate constant of the above reaction if the slope is $2 \times 10^{-4} \mathrm{~s}^{-1}$.

Ans. (i) Slope $=\frac{K}{2.303}$
(ii) Slope $=2 \times 10^{-4} \mathrm{~s}^{-1}$
$\therefore \mathrm{K}=2.303 \times$ Slope
$=2.303 \times 2 \times 10^{-4} \mathrm{~s}^{-1}$
$=4.606 \times 10^{-4} \mathrm{~S}^{-1}$
Q. 3. For a certain chemical reaction variation in concentration in [R] VS time plot is given below. For this reaction write :

(i) What are the units of rate constant ?
(ii) Give the relationship between k and $t_{1 / 2}$.
(iii) What does the slope of the above line indicate?

The More Goals You Set - The More Goals You Get.

Ankit Gupta Classes

Ans. (i) time $^{-1}\left(\mathrm{~s}^{-1}\right)$
(ii) $K=\frac{0.693}{t_{1 / 2}}$
(iii) rate constant K of the reaction.
Q.4. Consider the following diagram representing potential energy plot and answer the following questions :
(i) What do ' x ' and ' y ' represent ?
(ii) What does ' z ' represent in this diagram ?
(iii) Is the reaction endothermic or exothermic?

Reaction coordinate.

Ans. (i) ' x ' represents E_{a} for forward reaction. ' y ' represents E_{a} for backward reaction.
(ii) $\quad z$ represents $\Delta \mathrm{H}$, the enthalpy change for the reaction.
(iii) Exothermic reaction.
Q. 5. Consider a plot between k vs $\frac{1}{T}$ where T is the temperature. On the basis of this plot, answer the following questions :

Ankit Gupta Classes

(i) What is the slope in this line ?
(ii) What is the intercept of this line on the y-axis?
(iii) What is the relation between K and T ?

Ans. (i) Slope $=-\frac{E_{a}}{R}$
(ii) \quad Intercept $=\ln \mathrm{A}$
(iii) $\quad \ln k \alpha \frac{1}{T}$ or $K=A e^{- \text {EaRT }}$
Q. 6. Diagram given below shows a plot of potential energy Vs reaction co-ordination for a hypothetical reaction. Write answers to the following from the plot given :
(a) Represent reactant, product and activated complex in terms of A, B and C?
(b) Is this reaction exothermic or endothermic ?
(c) What will be the effect of a catalyst on E_{a} of the reaction?

Ankit Gupta Classes

Ans. (a) $A \longrightarrow$ Reactant
$B \longrightarrow$ Product
C \longrightarrow Activated Complex
(b) Exothermic
(c) Catalyst will lower the activation energy for the reaction.
Q. 7. The rate of a first order reaction is $0.04 \mathrm{~mol} / \mathrm{h} / \mathrm{s}$ at 10 minutes and $0.03 \mathrm{~mol} / \mathrm{h} / \mathrm{s}$ at 20 minutes. Find the half life period of the reaction.

Ans. Rate $=\mathrm{KC}$

$$
\begin{aligned}
& r_{1}=K C_{1} \\
& r_{2} \quad=K C_{2} \\
& \frac{r_{1}(10 \mathrm{~min})}{r_{2}(20 \mathrm{~min})}=\frac{C_{1}}{C_{2}}=\frac{0.04}{0.03} \\
& K=\frac{2.303}{t} \log \frac{C_{1}}{C_{2}}
\end{aligned}
$$

Whent $=10 \mathrm{~min}$

$$
\begin{aligned}
& K=\frac{2.303}{t} \log \frac{0.04}{0.03}=\frac{2.303}{10} \log \frac{4}{3} \quad=0.0287 \mathrm{~min}^{-1} \\
& t_{1 / 2}=\frac{0.693}{K}=\frac{0.693}{0.0287} \quad=24.14 \mathrm{~min} .
\end{aligned}
$$

