www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com

UNIT—9

CO-ORDINATION COMPOUNDS

1 MARK & 2 MARKS QUESTIONS

- Q. 1. A cationic complex has two isomers A & B. Each has one Co³+, five NH₃, one Br and one SO₄². A gives a white precipitate with BaCl₂ solution while B gives a yellow precipitate with AgNO₃ solution.
 - (a) What are the possible structures of the complexes A and B?
 - (a) Will the two complexes have same colour?
- **Ans.** (a) $[CO(NH_3)_5 Br] SO_4$ and $[CO(NH_3)_5 SO_4] Br$
 - (b) NO
- Q. 2. FeSO₄ solution mixed with (NH₄)₂SO₄ solution in 1 : 1 molar ratio gives the test of Fe²⁺ ion but CuSO₄ solution mixed with aqueous ammonia in 1 : 4 molar ratio does not give the test of Cu²⁺ ion. Explain why?
- Ans. When FeSO₄ and (NH₄)₂SO₄ solution are mixed in 1 : 1 molar ratio, a double salt is formed. It has the formula FeSO₄ (NH₄)₂SO₄ . 6 H₂O. In aqueous solution, the salt dissociates.

 When CuSO₄ and NH₃ are mixed in the molar ratio of 1 : 4 in solution, a complex

[Cu (NH₃)₄] SO₄ is formed.

- Q. 3. If to an aqueous solution of $CuSO_4$ in two tubes, we add ammonia solution in one tube and HCl (aq) to the other tube, how the colour of the solutions will change? Explain with the help of reaction.
- Ans. In first case, colour will change from blue to deep blue.

$$[Cu (H_2O)_4]^{2+} + 4 NH_3 \longrightarrow [Cu (NH_3)_4]^{2+} + 4 H_2O$$
deep blue

While in second case, its colour will change to yellow.

$$[\mathsf{Cu}\;(\mathsf{H_{2}O})_{4}]^{2+} + 4\;\mathsf{Cl^{-}} \longrightarrow [\mathsf{CuCl_{4}}]^{2+} + 4\;\mathsf{H_{2}O}$$

The More Goals You Set - The More Goals You Get.

yellow

- Q. 4. A, B and C are three complexes of Chromioum with the empirical formula H₁₂O₆Cl₃Cr. All the three complexes have Cl and H₂O molecules as the ligands. Complex A does not react with conc. H₂SO₄. Complexes B and C lose 6.75% and 13.5% of their original weight respectively on heating with conc. H₂SO₄. Identify A, B and C.
- Ans. Data suggests that the complexes are hydrate isomers.

As comples A does not lose any molecule of H₂O on heating which shows that no water molecule of H₂O is outside the co-ordination sphere.

$$\therefore A = [Cr (H_2O]_0] Cl_3$$

As B loses 6.75% : actual loss in wt.

$$= \times 266.5 = 18$$
 au

$$B = [Cr (H_2O)_5 Cl] Cl_2 . H_2O$$

As C loses 13.5% of wt. on heating which is twice the loss in the first case, \therefore C isomer exists as a dihydrate :

Q. 5.
$$Fe^{3+} \longrightarrow (A) \longrightarrow (B)$$
excess
excess

What are (A) and (B)? Give IUPAC name of (A). Find the spin only magnetic moment of (B).

Ans.
$$A = Fe (SCN)_3$$
, $B = [FeF_6]^{3-}$

IUPAC name of A = trithiocyanato iron (III)

E. C. of Fe (III) = d^5 , unpaired $e^-s = 5$

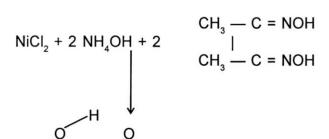
The More Goals You Set - The More Goals You Get.

www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com

Spin only magnetic moment = $\sqrt{5(5+2)}$ B. M.

= 5.916 B. M.

- Q. 6. A complex is prepared by mixing $COCl_3$ and NH_3 in the molar ratio of 1 : 4, 0.1 M solution of this complex was found to freeze at 0.372 °C. What is the formula of the complex ? Given that molal depression constant of water $K_f = 1.86$ °C/m.
- **Ans.** The oretical $\Delta T_r = K_r$. m


$$= 1.86 \times 0.1$$

$$= 0.186^{\circ}$$

observed $\Delta T_r = 0.372^{\circ}$

As observed ΔT_f is double of the theoretical value this shows that each molecule of the complex dissociates to form two ions. \therefore formula is:

- Q. 7. How t_{2g} and eg orbitals are formed in an octahedral complex ?
- Ans. In an octahedral complex, positive metal ion is considered to be present at the centre and negative ligands at the corners. As lobes of $dx^2 y^2$ and dz^2 lie along the axes, i. e. along the ligands repulsions are more and so is the energy. The lobes of the remaining three d-orbitals lie between the axes i. e. between the ligands, the repulsions between them are less and so is the energy.
- Q. 8. Dimethyl glyoxime is added to alcoholic solution of NiCl₂. When ammonium hydroxide is slowly added to it, a rosy red precipitate of a complex appears.
 - (a) Give the str. of the complex showing hydrogen bond.
 - (b) Give oxidation state and hybridisation of central metal ion.
 - (c) Identify whether it is paramagnetic or diamagnetic.
- Ans. (a)

ou Get.

- (b) O. S. = +2bybridisation = dsp^2
- (c) diamagnetic as no unpaired electron.
- Q. 9. Explain the reason behind a colour of some gem stone with the help of example.
- Ans. The colours of many gem stones are due to the presence of transition metal ions & colour are produced due to d-d transition. For example the mineral corundum Al₂O₃ is colourless when pure but when various M³⁺ transition metal ions are present in trace amounts various gem stones are formed. Ruby is Al₂O₃ containing about 0.5 1% Cr³⁺.
- Q. 10. How many EDTA (lethylendiamine tetra acetic acid) molecules are required to make an octahedral complex with a Ca²⁺ ion.
- **Ans.** EDTA is a hexadentate ligand therefore only one EDTA molecule is required to form octahedral complex.
- Q. 11. What is the hybridisation of central metal ion and shape of Wilkinson's catalyst?
- **Ans.** Wilkinson's catalyst is (PH₃P)₃ RhCl. In this Rh has dsp² hybridisation and square planar shape.
- Q. 12. Which vitamin is a complex compound of cobalt ?
- **Ans.** Vitamin B_{12} is a complex compound in which central metal atom is cobalt.
- Q. 13. Write the IUPAC name of [CO (NH₃)₄ B₁₂]₂ [ZnCl₄].
- Ans. Tetraamminedibromocobalt (III) tetrachlorozincate (II)
- Q. 14. What is the value of x in the complex HxCO (CO)₄ on the basis of EAN rule. (At. No. Co` = 27)

Ans.
$$x = 36 - (27 + 4 \times 2)$$

= $36 - 35$

Q. 15. Why is the silver plating of copper, K [Ag (CN)₂] is used instead of AgNO₃?

www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com

Ans. This is because if AgNO₃ is used Cu will displace Ag⁺ from AgNO₃. The deposit so obtained is black, soft, non-adhering. To get a good shining deposit, [Ag (CN)₂]⁻ are used as it is a stable complex, the conc. of Ag⁺ is very small in the solution. As such no displacement of Ag⁺ ions with Cu is possible.