



### **UNIT—8**

### THE d- AND f-BLOCK ELEMENTS

#### **Some Important Terms:**

Compounds / Minerals / Reagents or mixtures etc of d- and f- block elements.

- 1. Argentite Ag<sub>2</sub>S
- 2. Argenti ferrous galena PbS + Ag<sub>2</sub>S
- 3. Azurite Cu (OH)<sub>2</sub> . 2 CuCO<sub>3</sub>
- 4. Benedict Solution Alkaline Solution cupric ions complexed with citrate ions.
- Blue Vitriol CuSO<sub>4</sub> . 5 H<sub>2</sub>O
   (Blue Stone)
- 6. Bayer's Reagent Cold alkaline KMnO<sub>4</sub> Solution
- 7. Blister Copper 99% Pure Copper
- 8. Corrosive Sublimate HgCl,
- 9. Calomel  $Hg_2Cl_2$
- 10. Calamine ZnCO<sub>3</sub>
- 11. Coinage metal Cu, Ag and Au
- 12. Copper Pyrite CuFeS<sub>2</sub> or Cu<sub>2</sub>S . Fe<sub>2</sub>S<sub>3</sub>
- 13. Copper glance Cu<sub>2</sub>S
- 14. Cinnabar HgS
- 15. Chromyl Chloride CrO<sub>2</sub>Cl<sub>2</sub>
- 16. Chrome Yellow PbCrO<sub>4</sub>(Lemon Chrome)





- 17. Calaverite AuTe,
- 18. Chromic acid mixture K<sub>2</sub>CrO<sub>7</sub> + Con. H<sub>2</sub>SO<sub>4</sub>
- 19. Delomite CaCO<sub>3</sub> . MgCO<sub>3</sub>
- 20. Delta Metal Cu (55%), Zn (41%), Fe (4%)
- 21. Fischer's Salt  $K_3$  [CO (NO<sub>2</sub>)<sub>4</sub>]
- 22. Fehling Solution CuSO<sub>4</sub> + Sod. Pot. Tartarate + NaOH
- 23. Green Vitriol FeSO<sub>4</sub> . 7 H<sub>2</sub>O (Hara Kasis)
- 24. Ferro Chrome Fe + 2 Cr + 4 CO
- 25. Guigret's green Cr<sub>2</sub>O<sub>3</sub> . 2 H<sub>2</sub>O
- 26. Haematite Fe<sub>2</sub>O<sub>3</sub>(Red Haematite)
- Horn Silver AgCl (Chloragynite)
- 28. Lucas reagent Conc. HCl + anhydrous ZnCl<sub>2</sub>
- 29. Lunar Caustic AgNO<sub>3</sub>
- 30. Lithopone ZnS + BaSO<sub>4</sub>
- 31. Lindar Catalyst Palladised Charcoal deactivated with Sulphur compounds.
- 32. Malachite  $Cu (OH)_2$ . 2  $CuCO_3$
- 33. Monel Metal Cu, Ni and Mn
- 34. Nesseler's reagent K<sub>2</sub>Hgl<sub>4</sub>
- 35. Prussian blue  $Fe_4$  [Fe (CN)<sub>6</sub>]<sub>3</sub>
- 36. Pyrites (Fool's Gold) FeS<sub>2</sub>
- 37. Quick Silver Hg
- 38. Schweitzer reagent Tetramine Copper (II) Sulphate



ankitgupta.gupta175@gmail.com



- 39. Sterling Silver Solution of Cu in Hg
- 40. Scheelite CaWO<sub>4</sub> (Calcium tungstate)
- 41. Tollen's reagent AgNO<sub>3</sub> + NaOH
- 42. Tailing of mercury Hg,O
- 43. Vermilion HgS
- 44. Willemite Zn<sub>2</sub>SiO<sub>4</sub>
- 45. Zincite ZnO
- 46. Zinc butter ZnCl<sub>2</sub> . 3 H<sub>2</sub>O

#### **1 MARK QUESTIONS**

#### Q. 1. What is the equivalent wt. of KMnO<sub>4</sub> in :

- (a) Acidic Medium (b) Neutral Medium (c) In alkaline Medium
- **Ans.** (a) In Acidic Medium the reaction is :

$$5 e^{-} + 8 H^{+} + MnO_{4}^{-} \longrightarrow 4 H_{2}O + Mn^{2+}$$

$$\therefore \frac{M}{5} = \frac{158}{5} = 31.6 \text{ g}$$

(b) In Neutral Medium the reaction is:

$$MnO_4^- + 2 H_2O + 3 e^- \longrightarrow MnO_2 + 4 OH^-$$

$$\therefore$$
 eq. wt. =  $\frac{M}{3} = \frac{158}{3} = 52.67$ 

- (c) In Alkaline Medium the reaction is:
  - (i) Strongly Alkaline Medium

$$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$$

magnate ion

$$\therefore \frac{M}{1} = \frac{158}{1} = 158$$

(ii) In Weakly Alkaline Medium the reaction is:

$$MnO_{4}^{-} + 2 H_{2}O + 3 e^{-} \longrightarrow MnO_{2} + 4 OH^{-}$$

www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com



Same as in neutral medium

$$\frac{M}{3} = \frac{158}{3} = 52.67$$

- Q. 2. K<sub>2</sub>Pt<sup>+4</sup>Cl<sub>6</sub> is well known compound and corresponding Ni<sup>4+</sup> Salt it unknown? Whereas Ni<sup>+2</sup> is more stable than Pt<sup>+2</sup>.
- Ans. The stability of the compounds depend upon sum of ionization enthalpies :

$$IE_{1} + IE_{2} < IE_{1} + IE_{2}$$

in Ni

in Pt

∴ Ni<sup>2+</sup> is stable than Pt<sup>+2</sup>.

$$IE_1 + IE_2 + IE_3 + IE_4 < IE_1 + IE_2 + IE_3 + IE_4$$

in Pt4+

in Ni4+

- ∴ Pt<sup>4+</sup> is stable, ∴ K₂PtCl<sub>6</sub> is well known compound
- Q. 3. Sc3+ is more stable than Sc2+.
- **Ans.**  $Sc = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$

$$Sc^{3+} = 1s^2 2s^2 2p^6 3s^2 3p^6$$

Inert gas configuration : more stable.

- Q. 4. Why KMnO<sub>4</sub> is bright in colour?
- **Ans.** It is due to charge transfer. In MnO<sub>4</sub><sup>-</sup> an electron is momentarily transferred from O to the metal, thus momentarily O<sup>2-</sup> is changed to O<sup>-</sup> and reducing the oxidation state of the metal from Mn (VII) to Mn (VI).
- Q. 5. Why gold, Pt are dissolved in aqua Ragia?

**Ans.** Au + 4 Cl<sup>-</sup> 
$$\longrightarrow$$
 AuCl<sub>4</sub><sup>-</sup> + 3 e<sup>-</sup> (oxidation)

$$3 e^{-} + 4 H^{+} + NO_{3}^{-} \longrightarrow NO + 2 H_{2}O$$
 (reduction)

$$Au + 4 H^+ + 4 Cl^- + NO_3^- \longrightarrow AuCl_4^- + NO + 2 H_2O$$

\_\_\_\_\_

www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com



Pt + 6 Cl<sup>-</sup> 
$$\longrightarrow$$
 PtCl<sub>6</sub><sup>2-</sup> + 4 e<sup>-</sup> × 3 (oxidation)  
4 e<sup>-</sup> + 4 H<sup>+</sup> + NO<sub>3</sub><sup>-</sup>  $\longrightarrow$  NO + 2 H<sub>2</sub>O × 4 (reduction)  
18 Cl<sup>-</sup> + 3 Pt + 16 H<sup>+</sup> + 4 NO<sub>3</sub><sup>-</sup>  $\longrightarrow$  3 PtCl<sub>6</sub><sup>2-</sup> + 4 NO + 8 H<sub>2</sub>O

Q. 6. (a) CrO is basic but Cr<sub>2</sub>O<sub>3</sub> is amphoteric?

O. N. 
$$+2 +3$$

- Ans. (a) Higher the oxidation state higher the acidity. In lower oxidation state some of valence e-of the metal atom are not involved in bonding, : can donate e- and behave as base. In higher oxidation state e- are involved in bonding and are not available, rather it can accept e- and behave as an acid.
  - (b) Why the following is the order:

$$V_2O_3$$
  $V_2O_4$   $V_2O_5$ 

Basicity.

**Ans.** 
$$\therefore$$
 Basicity  $\alpha$   $\frac{1}{\text{Oxidation No.}}$ 

refer (a) for reason.

Q. 7. (a) How is Lanthanoids magnetic moment is calculated?

Ans. 
$$b = \sqrt{4 S (S+1) + L (L+1)} B. M.$$

Where S = Spin quantum no.

L = Orbital quantum no.

- (b) In the titration of Fe<sup>2+</sup> ions with KMnO<sub>4</sub> in acidic medium, why dil.  $H_2SO_4$  is used and not dil. HCl.
- **Ans.** KMnO<sub>4</sub> produce Cl<sub>2</sub> KMnO<sub>4</sub> in presence of dil. HCl acts as oxidising agent, Oxygen produced is used up partly for oxidation of HCl:



www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com



2 KMnO<sub>4</sub> + 3 H<sub>2</sub>SO<sub>4</sub> 
$$\longrightarrow$$
 K<sub>2</sub>SO<sub>4</sub> + 2 MnSO<sub>4</sub> + 3 H<sub>2</sub>O + 5 (O)  
2 KMnO<sub>4</sub> + 4 HCl  $\longrightarrow$  2 KCl + 2 MnCl<sub>2</sub> + 2 H<sub>2</sub>O + 6 (O)  
2 HCl + (O)  $\longrightarrow$  H<sub>2</sub>O + Cl<sub>2</sub>

- Q. 8. (a) The E° value for Ce<sup>4+</sup>/Ce<sup>3+</sup> is 1.74 Volt.
  - (b) K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> is used as Primary Standard in volumetric analysis.
- **Ans.** (a) Ce<sup>4+</sup> is strong oxidant, being Lanthanoid it reverts to Ce<sup>3+</sup> as + 3 is most stable.
  - (b) K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> is not much soluble in cold water. However, it is obtained in pure state and is not Hygroscopic in nature.
- Q. 9. (a) Although Cu<sup>+</sup> has configuration 3 d<sup>10</sup> 4 s<sup>0</sup> (stable) and Cu<sup>2+</sup> has configuration 3 d<sup>9</sup> (unstable configuration) still Cu<sup>2+</sup> compounds are more stable than Cu<sup>+</sup>.
  - (b) Titanium (IV) is more stable than Ti (III) or Ti (II).
- **Ans.** (a) It is due to much more (–) ∆ Hydration H- of Cu²+ (aq) than Cu+, which is more than compensates for the II ionization enthalpy of Cu.
  - (b)  $_{22}$ Ti = 3 d<sup>2</sup> 4 s<sup>2</sup>

$$Ti^{III} = 3 d^1$$

$$Ti^{II} = 3 d^2$$

$$Ti^{IV} = 3 d^{\circ}$$

most stable configuration.

∴ Ti<sup>IV</sup> is more stable than Ti<sup>III</sup> and Ti<sup>II</sup>.

- Q. 10. The actinoids exhibit more number of oxidation states and give their common oxidation states.
- **Ans.** As the distance between the nucleus and 5 f orbitals (actinoides) is more than the distance between the nucleus and 4 f (lanthanoids) hence the hold of the nucleus on valence electrons decrease in actinoids. For this reason the actinoids exhibit more number of oxidation states in general.

Common O. N. exhibited are + 3 (similar to Canthanoids) besides + 3 state, also show + 4, maximum oxidation state in middle of series i. e. Pu and Np. have anoidation state upto + 7.

Q. 11. (a) Give reason CrO<sub>3</sub> is an acid anhydride.







- (b) Give the structure of CrO<sub>5</sub>.
- **Ans.** (a)  $CrO_3 + H_2O \longrightarrow H_2CrO_4$  i. e.  $CrO_3$  is formed by less of one  $H_2O$  molecule from chromic acid :

$$- H_{2}O$$

$$H_{2}CrO_{4} \longrightarrow CrO_{3}$$
(b)

Q. 12. A wellknown orange crystalline compound (A) when burnt impart violet colour to flame. (A) on treating (B) and conc. H<sub>2</sub>SO<sub>4</sub> gives red gas (C) which gives red yellow solution (D) with alkaline water. (D) on treating with acetic acid and lead acetate gives yellow p. pt. (E). (B) sublimes on heating. Also on heating (B) with NaOH gas (F) is formed which gives white fumes with HCI. What are (A) to (F)?

**Ans.** (i)  $K_2Cr_2O_7 + 4 NH_4CI + 3 H_2SO_4 \longrightarrow K_2SO_4 +$ 

(A) (B) Sublime

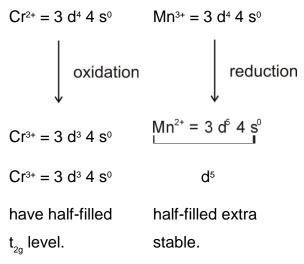
 $2 \operatorname{Cr_2O_2Cl_2} + 2 (\operatorname{NH_4})_2 \operatorname{SO_4} + 3 \operatorname{H_2O}$ 

Chromyl Chloride red gas (C)

(ii)  $CrO_2Cl_2 + 4 NaOH \longrightarrow Na_2CrO_4 + 2 NaCl + 2 H_2O$ 

(D) Yellow Soln.

(iii)  $Na_2CrO_4 + (CH_3COO)_2 Pb \longrightarrow PbCrO_4 + 2 CH_3COONa$ 


Yellow p. pt. (E)

- Q. 13. Why is Cr<sup>2+</sup> reducing and Mn<sup>3+</sup> oxidising when both have d<sup>4</sup> configuration?
- Ans. Cr²+ is reducing as its configuration changes from d⁴ to d³, the d³ has half-filled t₂g level. n the other hand, the change from Mn²+ to Mn³+ results in the half filled (dS) configuration which has extra stability.



www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com





- Q. 14. (a) In MnO<sub>4</sub><sup>-</sup> ion all the bonds formed between Mn and Oxygen are covalent. Give reason.
  - (b) Beside + 3 oxidation state Terbium Tb also shows + 4 oxidation state. (Atomic no. = 65)
- Ans. (a) In  $MnO_4^-$ , O. N. is + 7, but it is not possible to lose 7 electrons because very high energy is required to remove 7 electrons. Therefore it forms covalent bonds.
  - (b) Tb = 65 E. C. is  $4 f^9 6 s^2$

 $Tb^{4+} = 4 f^7 6 s^0$ 

half-filled f-orbital : stable.

after losing 4 e- it attains half-filled orbital.

- Q. 15. (a) Highest manganese flouride is MnF<sub>4</sub> whereas the highest oxide is Mn<sub>2</sub>O<sub>7</sub>.
  - (b) Copper can not librate H, from dil acids :

Note: Although only oxidising acids (HNO<sub>3</sub> and hot conc. H<sub>2</sub>SO<sub>4</sub>) react with Cu light.

- **Ans.** (a) The ability of oxygen to form multiple bonds to metals, explain its superiority to show higher oxidation state with metal.
  - (b) Positive E° value (+ O 34 Volt) accounts for its inability to liberate  $H_2$  from acids. The high energy to transform Cu (s) to  $Cu^{2+}$  (aq) is not balanced by its Hydration enthalpy.



www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com



Note: For (b) Consult Fig. 8.4 in NCERT

Q. 16. A metal which is strongly attracted by a magnet is attacked slowly by the HCl liberating a gas and producing a blue solution. The addition of water to this solution causes it to turn pink, the metal is

Ans. The metal is CO

$$CO + 2 HCI \longrightarrow COCl_2 + H_2$$

blue solution

 $COCl_2$  in solution is  $[CO(H_2O)_6]^{2+}$ 

blue pink