www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com

UNIT-1

SOLID STATE

1 MARK QUESTIONS

- Q. 1. Name a liquefied metal which expands on solidification.
- **Ans.** Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion.
- Q. 2. How many number of molecules per unit cell which crystallizes in the form of end face centred (monoclinic) lattice with a molecule at each lattice.
- **Ans.** 2.
- Q. 3. What is the coordination number of carbon, in diamond?
- Ans. 4 and its unit cell has 8 atoms.

[The space lattice of diamond is FCC]

- Q. 4. Name the solid which has weakest intermolecular force?
- Ans. Ice
- Q. 5. Arrange the following types of interactions in correct order of their increasing strength:

Covalent, hydrogen bonding, Vander Waals, dipole dipole

- Ans. Vander Waals < dipole dipole < hydrogen bonding < covalent.
- Q. 6. Give reason for the appearance of colour in alkali metal halides.
- Ans. Due to F-centres.
- Q. 7. Which type of defect occur in Ag Br?

Ans. Schottky defect and Frekel defect.

Q. 8. Give one example of doping which produces p-type of semi-conductors.

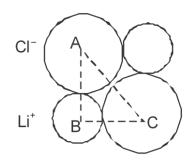
Ans. Ge doped with Al.

Q. 9. Out of (a) Graphite and (b) Carborundum which one is harder?

Ans. Carborundum.

Q. 10. How can a material be made amorphous?

Ans. By melting the material and by cooling it rapidly.


2 MARKS QUESTIONS

Q. 1. Give Reason:

The energy required to vaporize one mol of copper is smaller than that of energy required to vaporize 1 mol of diamond.

- **Ans.** Copper is a metallic solid having metallic bonds while diamond is a covalent solid having covalent bonds. Metallic bonds are weaker than covalent bonds and thus less amount of energy is required to break metallic bonds than covalent bonds.
- Q. 2. The unit cube length for LiCl (NaCl) is 5.14 °A. Assuming anion-anion contact. Calculate the ionic radius for Chloride ion.

Ans.

Interionic distance of LiCI = 5.14 / 2 = 2.57 A

$$AC = \sqrt{AB^2 + BC^2}$$

www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com

$$= \sqrt{2.57^2 + 2.57^2}$$
$$= 3.63$$

therefore, radius of $CI^- = \frac{1}{2} \times 3.63 = 1.81 \text{ A}$

Q. 3. Give reasons:

- (a) Diamond and rhombic Sulphur are covalent solids, but the latter has lower melting points.
- (b) Among NaCl and CsCl, CsCl is quite stable.
- Ans. (a) Due to weak Vander Waal's Force in Sulphur molecule.
 - (b) CsCl coordination number is 8. It is surrounded by 8 anion tightly.
- Q. 4. How many unit cells are present in a cube shaped ideal crystal of NaCl of mass 1 gm?

$$= a^{3} \times d$$

$$= \frac{a^{3} \times M \times Z}{N^{0}a^{3}}$$

$$= \frac{58.5 \times 4}{6.023 \times 10^{23}}$$

No. of unit cells in 1 gm = 1/M

$$= 6.023 \times 10^{23} / 58.5 \times 4$$
$$= 2.57 \times 10^{21}$$

- Q. 5. In the mineral spinal; having the formula MgAl₂O₄. The oxide ions are arranged in CCP, Mg²⁺ ions occupy the tetrahedral voids. While Al³⁺ ions occupy the octahedral voids.
 - (i) What percentage of tetrahedral voids is occupied by Mg²⁺ ions?

- (ii) What percentage of octahedral voids is occupied by Al3+ ions?
- Ans. According to the formula, MgAl₂O₄. If there are 4 oxide ions, there will be 1 Mg²⁺ ions and 2 Al³⁺. But if the 4 O²⁻ ions are ccp in arrangement, there will be 4 octahedral and 8 tetrahedral voids.
 - (i) Percentage of tetrahedral voids occupied by $Mg^{2+} = (1 / 8) \times 100$

(ii) Percentage of octahedral voids occupied by $Al^{3+} = (2/4) \times 100$

Q. 6. Give reasons:

- (a) Window glass of old building look milky.
- b) Window glass of old building is thick at bottom.
- (c) CaCl₂ will introduce Schottky defect if added to AgCl crystal.
- Ans. (a) Due to annealing over a number of years glass acquires some crystalline character.
 - (b) Glass is not a true solid. But a super-cooled liquid of high viscosity. It has the property to flow.
 - (c) 2 Ag⁺ will be replaced by 1 Ca²⁺ ions to maintain electrical neutrality. Thus a hole is created and lattice site for every Ca²⁺ ion introduced.
- Q. 7. Analysis shows that nickel oxide has the formula NiO_{.98}O_{1.00}. What fractions of nickel exist as Ni²⁺ and Ni³⁺ ions ?

Ans. NiO_{.98}O_{1.00}

Let
$$Ni^{2+}$$
 be x and Ni^{3+} be $0.98 - x$

Total charge on compd. is equal to zero.

$$[2 (Ni^{2+}) + 3 (Ni^{3+}) - 2 (O^{2-})] = 0$$

The More Goals You Set - The More Goals You Get.

$$2 \times + 3 (0.98 - x) - 2 = 0$$

$$x = 0.94$$
Therefore Ni²⁺ % = $\frac{0.94}{0.98} \times 100 = 96\%$

 $Ni^{3+} = 4\%$

- Q. 8. What type of defect can arise when a solid is heated? Which physical property is affected by this and in what way?
- **Ans.** When a solid is heated vacancy defect arises. This is because on heating some atoms or ions leacve the lattice site completely some lattice sites are vacant. As a result of this defect the density of the substance decreases, because some atoms leave the structure completely.
- Q. 9. (a) What happens when a Ferromagnetic or Ferrimagnetic solid is heated?
 - (b) The ions of MgO and NaF all have the same number of electrons and intermolecular distance are about the same (235 & 215 pm). Why are the melting points are so different (2642 °C & 992 °C ?
- Ans. (a) It changes into paramagnetic at hight temperature due to randomization of spins.
 - (b) The ions in MgO carry two unit charges. In NaCl only one unit charge. Hence electrostatic forces of attraction in MgO are stronger.
- Q. 10. (a) If the radius of the Br ion is 0.182 nm, how large a cation can fit in each of the tetrahedral hole.
 - (b) Agl crystallizes in a cubic closed packed ZnS structure. What fraction of tetrahedral site is occupied by Ag ion?
 - (c) At what temp. range, most of the metals becomes super conductors?
- **Ans.** (a) For a tetrahedron the limiting ratio is 0.225 0.414

For largest cation highest value 0.414 would be considered.

www.AnkitGuptaClasses.weebly.com gupta.ankit54@yahoo.com ankitgupta.gupta175@gmail.com

$$r^+/r^- = 0.414$$

 $r^+ = 0.414 \times 0.182 = 0.075 \text{ nm}.$

- (b) In FCC there are 8 tetrahedral voids. Out of this ½ is occupied by Ag cation
- (c) 2 k 5 k.